
ar
X

iv
:1

20
1.

05
20

v1
  [

m
at

h.
C

A
] 

 2
 J

an
 2

01
2

EQUIVALENT DEFINITIONS OF DYADIC MUCKENHOUPT AND REVERSE
HÖLDER CLASSES IN TERMS OF CARLESON SEQUENCES, WEAK CLASSES,

AND COMPARABILITY OF DYADIC L logL AND A∞ CONSTANTS.

O. BEZNOSOVA AND A. REZNIKOV

Abstract. In the dyadic case the union of the Reverse Hölder classes,
⋃

p>1
RHd

p is strictly larger than

the union of the Muckenhoupt classes
⋃

p>1
Ad

p = Ad
∞
. We introduce the RHd

1
condition as a limiting

case of the RHd
p inequalities as p tends to 1 and show the sharp bound on RHd

1
constant of the weight

w in terms of its Ad
∞

constant.
We also take a look at the summation conditions of the Buckley type for the dyadic Reverse Hölder and

Muckenhoupt weights and deduce them from an intrinsic lemma which gives a summation representation
of the bumped average of a weight. Our lemmata also allow us to obtain summation conditions for
continuous Reverse Hölder and Muckenhoupt classes of weights and both continuous and dyadic weak
Reverse Hölder classes. In particular, it shows that a weight belongs to the class RH1 if and only if it
satisfies Buckley’s inequality. We also show that the constant in each summation inequality of Buckley’s
type is comparable to the corresponding Muckenhoupt or Reverse Hölder constant.

To prove our main results we use the Bellman function technique.

I. Definitions and Main Results.

Recently different approaches to dyadic and continuous A∞ class gave an essential improvement of
the famous A2 conjecture. The improvement, called Ap −A∞ bound for Calderon-Zygmund operators,
was obtained by means of the observation that if a weight w belongs to the Muckenhoupt class Ap,
then it belong to a bigger class A∞, and a certain sequence satisfies the Carleson property. We refer
the reader to papers [HPTV], [HyPer] for the precise proof of A2 − A∞ bound (in [HPTV] it is not
formulated, but can be seen from the proof), and to [HyLa] for a full proof of the Ap − A∞ bound.

Carleson sequences, related to Ap weights, appeared in many papers, where boundedness of singular
operators was studied. Many of them were proved using Bellman function method. Using this method,
the Carleson embedding theorem was proved in [NTV1]. Results related to Carleson measures (partially
proved with certain Bellman functions) also appeared in [NTV2], [Wit], [PP]. Also, the “easy” case of
the two weight inequality, [VaVo2], is a certain summation condition, and was also obtained by means
of Bellman function. Most of our proofs will use very natural (but not totally sharp) Bellman functions.

Let us explain our results in more details. In this paper we present equivalent definitions of Muck-
enhoupt classes Ap, Reverse Hölder classes RHp, and prove sharp inequalities, that show that these
definitions are indeed equivalent. One type of these definitions is given in terms of Carleson sequences.
Also, we define limiting cases A∞ and RH1, which in the continuous case appear to be same sets (see
[BR]), but in the dyadic case the class RH1 is strictly bigger. We give equivalent definitions of these
classes in terms of certain Carleson sequences; besides this, we give a sharp estimate on so called A∞

and RH1 constants, which appears to be much harder than the continuous case (and, actually, somehow
uses the continuous result).

The paper is organized as follows. We start by following paper [BR], with all the main definitions
of dyadic Reverse Hölder and Muckenhoupt classes and state several equivalent ways define class RHd

1 .
Also in Section I we state our first main result of the paper, Theorem I.5 in which we establish the
comparability of dyadic Ad

∞ and RHd
1 constants.
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In Section II we study summation conditions, introduced first in [FeKPi] and [Buc1]. Our second
and third main results of this paper are, in fact, Lemma II.2 and Lemma II.4, two intrinsic lemmas
from which we deduce Theorem II.6 about comparability of sums in Buckley’s summation condition
and certain bumped averages of the weight w. Please note that even though Theorem II.6 turns out an
extremely strong fact and is very handy for Hölder and Muckenhoupt classes, our lemmata, especially
Lemma II.2 are much more general and could be applied to potentially large class of bumped averages
of any nonnegative function w and every interval J ⊂ R. We show how Theorem II.6 follows from our
lemmata and how Buckley’s theorem follows from Theorem II.6. It turns out that Theorem II.6 is also
sufficiently stronger than Buckley’s theorem because it is not summation conditions for Reverse Hölder
or Muckenhoupt classes, but comparability of averages and summations for any weight and any interval.
This is illustrated in Theorem II.7, where the comparability of constants in summation conditions and
corresponding Hölder and Muckenhoupt constants of the weight is established in both continuous and
dyadic cases.

In Section III we talk about weak Reverse Hölder and Muckenhoupt classes. We start by giving
definitions of these classes and state another consequence of Theorem II.6, Theorem III.3, which contains
a version of Buckley’s theorem but for the weak Reverse Hölder weights. The proof of Theorem III.3 is
essentially the same as the proof of theorem II.6, so we skip most of the details.

All Bellman function proofs can be found in Section IV. We start with proof of Lemma II.2, which
we think is the simplest of three Bellman function proofs given in this paper and is a nice introduction
to the Bellman function technique. Bellman function technique is not new, but as far as we know it
is the first place where Bellman function technique is applied in such “intrinsic” setup. By “intrinsic”
here we mean that lemma has function A(x) as one of the parameters, convexity properties of function
A are then used to build Bellman function for the inequality. Proof of Lemma II.2 is followed by the
proof of Lemma II.4 which we hope will be easy to digest after proof of Lemma II.2. Proof of Theorem
I.5 is the hardest one and takes last eighteen pages of the paper. The proof itself is in fact very similar
to the proof of continuous version of Theorem I.5, which can be found in [BR]. This dyadic proof is
longer than he continuous one because in the dyadic case we have to deal with many details that are
specific for the dyadic Bellman function proof in the non-convex domain. We encourage the reader to
understand the proof of Theorem 1.1 from [BR] first and then read our proof of Theorem I.5.

All results of this paper are in one-dimensional case only.
Acknowledgements
Authors are grateful to A. Volberg for useful suggestions in proving Theorem I.5 and to V. Vasyunin

for useful discussions.
We would also like to express our gratitude to C. Thiele, I. Uriarte-Tuero and A. Volberg for organizing

the Summer School 2010 in UCLA, where this paper was originated and C. Pérez and R. Esṕınola for
organizing the Summer School 2011 in Seville and AIM workshop, where we finished this paper.

I.1. First Definitions. Let D be the dyadic grid D := {I ⊂ R : I = [k2−j , (k + 1)2−j); k, j ∈ Z}.
We say that w is a weight if it is a locally integrable function on the real line, positive almost

everywhere (with respect to the Lebesgue measure). Let 〈w〉
J
be the average of a weight w over a given

interval J ⊂ R:

〈w〉
J
:=

1

|J |

∫

J

w dx

and ∆Jw be defined by

∆Jw := 〈w〉
J+

− 〈w〉
J−
,

where J+ and J− are left and right dyadic children of the interval J .
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Definition 1. A weight w belongs to the dyadic Muckenhoupt class Ad
p whenever its dyadic Muckenhoupt

constant [w]Ad
p
is finite:

(I.1) [w]Ad
p
:= sup

J∈D
〈w〉

J

〈
w− 1

p−1

〉p−1

J

<∞.

Remark I.1. The inequality (I.1) can be rewritten in the following way:

0 6

〈
w− 1

p−1

〉

J

− 〈w〉−
1

p−1

J
6

(
[w]

1
p−1

Ad
p

− 1

)
〈w〉−

1
p−1

J
.

We will use this way to write definitions of Reverse Hölder and Muckenhoupt classes later in the proof
of Theorem II.7.

Note that by Hölders inequality, [w]Ad
p
> 1 holds for all 1 < p <∞, as well as the following inclusion:

if 1 < p 6 q <∞ then Ad
p ⊆ Ad

q , [w]Ad
q
6 [w]Ad

p
.

So, for 1 < p < ∞ Muckenhoupt classes Ad
p form an increasing chain. There are two natural limits

of it - as p approaches 1 and as p goes to ∞. We will be interested in the limiting case as p → ∞,
Ad

∞ =
⋃

p>1A
d
p. There are several equivalent definitions of it, we will state one that we are going to

use (the natural limit of Ad
p conditions, that also defines the Ad

∞ constant of the weight w), for other
equivalent definitions see [GaRu], [Gr] or [St93].

(I.2) w ∈ Ad
∞ ⇐⇒ [w]Ad

∞
:= sup

J∈D
〈w〉

J
e
−〈logw〉

J <∞,

where log stands for the regular natural logarithm.

Remark I.2. The inequality (I.2) can be rewritten in the following way:

0 6 log 〈w〉
J
− 〈logw〉

J
6 log [w]Ad

∞
.

Note also that if a weight w belongs to the Muckenhoupt class Ad
p for some p > 1, or, equivalently,

to the class Ad
∞, then w has to be a dyadicaly doubling weight, i.e. its dyadic doubling constant

Dd(w) := supI∈D

〈w〉
F (I)

〈w〉
I

, where F (I) stands for the dyadic parent of the interval I, has to be finite.

Definition 2. A weight w belongs to the dyadic Reverse Hölder class RHd
p (1 < p <∞) if

(I.3) [w]RHd
p

:= sup
J∈D

〈wp〉1/p
J

〈w〉
J

<∞.

Remark I.3. The inequality (I.3) can be rewritten in the following way:

0 6 〈wp〉
J
− 〈w〉p

J
6

(
[w]p

RHd
p
− 1
)
〈w〉p

J
.

Note that by Hölders inequality the dyadic Reverse Hölder classes satisfy:

if 1 < p 6 q <∞, then RHd
q ⊆ RHd

p and 1 6 [w]RHd
p

6 [w]RHd
q
,

which is similar to the inclusion chain of the Ad
p classes, except inclusion runs in the opposite direction.

And similarly we can consider two limiting cases RHd
∞ (the smallest) and RHd

1 (the largest). Same
as in the case of Muckenhoupt classes we are more interested in the largest one, let us call it RHd

1 :=⋃
p>1RH

d
p .

The natural limit as p → 1+ of the Reverse Hölder inequalities is the following condition, which we
will take as a definition of the class RHd

1 :

(I.4) w ∈ RHd
1 ⇐⇒ [w]RHd

1
:= sup

J∈D

〈
w

〈w〉
J

log
w

〈w〉
J

〉

J

< ∞,



4 O. BEZNOSOVA AND A. REZNIKOV

where log is a regular logarithm base e, which could be negative. Nevertheless, by the Jensen inequality
RH1 constant defined this way is always nonnegative.

The RHd
1 constant of the weight w is the natural limit of RHd

p constants in the sense that for every
interval I ∈ D

(I.5)

〈
w

〈w〉
I

log
w

〈w〉
I

〉

I

= lim
p→1+

p

p− 1
log

〈wp〉
1
p

I

〈w〉
I

We want to make one remark about this definition.

Remark I.4. The inequality I.4 can be rewritten in the following way:

〈w log(w)〉
J
6 〈w〉

J
log 〈w〉

J
+Q 〈w〉

J
∀J ∈ D.

Note that since function x log x is concave, by Jensen’s inequality we also have

〈w〉
J
log 〈w〉

J
6 〈w log(w)〉

J
.

In the continuous case, for A∞ and RH1 in 1974 Coifman and Fefferman showed that A∞ =⋃
p>1RHp = RH1, in the dyadic case it is not true. One can only claim the inclusion Ad

∞ ⊂ RHd
1 .

As for the other inclusion, it only holds for the dyadicaly doubling weights since, unlike the Ad
p weights,

dyadic Reverse Hölder weights do not have to be doubling. An example of such weight can be found in
Buckley [Buc1].

Different ways to define RH1 constant of the weight w. First, observe that, trivially, logarithm
in the definition of the RH1 constant can be replaced by log+(x),

(
log+(x) = max(log x, 0)

)
or log(e+x),

which will, however, increase the RH1 constant slightly.
Secondly, from the Stein lemma (see [St69]), we know that

3−n 〈M(fχI)〉
I

6

〈
f log

(
e +

f

〈f〉
I

)〉

I

6 2n 〈M(fχI)〉
I

Thus an equivalent way to define RH1 constant is

(I.6) [w]RHd′
1

:= sup
1

w(I)

∫

I

M(wχI)dx,

which, indeed, is one of the ways to define class A∞, see for example [Wil] or [HyPer].
One can also define dyadic Reverse Hölder and Muckenhoupt constants using Luxemburg norms.

Same is true for RHd
1 -constant. Let us first define Luxemburg norm of a function in the following way:

for an Orlitz function Φ : [0,∞] 7→ [0,∞], we define ‖w‖Φ(L),I to be:

‖w‖Φ(L),I := inf

{
λ > 0:

1

|I|

∫

I

Φ

(
|w|

λ

)
6 1

}
.

Iwaniec and Verde in [IV] showed that for every w and I ⊂ R
n

‖w‖L logL,I 6

∫

I

w log

(
e +

w

〈w〉
I

)
dx 6 2 ‖w‖L logL,I ,

so another equivalent definition of the RH1 constant of the weight w is

(I.7) [w]RHd′′
1

:= sup
I∈D

‖w‖L logL,I

‖w‖L,I
.
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I.2. First Main result of the paper. In this section we carefully state the first result of the paper,
and then explain other questions we study.

In fact, we prove the following sharp relationship between RHd
1 and Ad

∞ constants:

Theorem I.5 (Main Result 1 : comparability of RH1 and A∞ constants). If weight w belongs
to the Muckenhoupt class Ad

∞, then w ∈ RHd
1 . Moreover,

(I.8) [w]RHd
1

6 C [w]Ad
∞
,

where the constant C can be taken to be log(16) (C = log(16)). Moreover, the constant C = log(16)
is the best possible.

Bellman function proof of this theorem can be found in Section IV.5. An independent proof of the
analogue of this theorem for the constant [w]RHd′

1
was recently independently obtained in [HyPer].

Note that all of the above is true in the continuous case and can be found in [BR] (with sharp constant
C = e, and with the double exponential lower bound). Note also that the lower bound (Theorem 1.2 in
[BR]) in dyadic case cannot possibly hold since the class RHd

1 is strictly larger than Ad
∞.

II. Summation conditions on weights

In this section we will introduce and discuss an important set of inequalities that characterize the
dyadic Reverse Hölder and Muckenhoupt classes. We are mostly interested in the dyadic results here,
so we will follow Buckley [Buc2]. Note that the inequalities we are going to discuss in this section
have continuous analogues, and many facts and questions here apply to the continuous case as well (see
[FeKPi]).

As we discussed earlier, RHd
1 6= Ad

∞ because all dyadic Muckenhoupt conditions imply that the
weight is dyadically doubling , while dyadic Reverse Hölder conditions allow nondoubling weights (in the
continuous case both Reverse Hölder and Muckenhoupt conditions imply continuous doubling property).
For the dyadically doubling weights the RHd

1 and Ad
∞ conditions are equivalent.

We will now state a theorem that characterizes dyadic Reverse Hölder and Muckenhoupt classes
via summation conditions. We attribute this theorem to Buckley, however all parts but the Buckley’s
inequality (part (2)) in the continuous case and part (4) in the dyadic case first appeared in [FeKPi]
and are due to Fefferman, Kenig and Pipher.

Theorem II.1. [Buckley’93]
Suppose 1 < p <∞ and w is a doubling weight. Then
(1) w ∈ RHd

p if and only if on every dyadic interval J

(II.1)
1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| ≤ K 〈w〉p

J
,

moreover, K ≤ C[w]p
RHd

p
.

(2) (Buckley’s inequality) w ∈ RHd
1 if and only if for some K > 0 on every dyadic interval J

(II.2)
1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉
I
|I| ≤ K 〈w〉

J
.

(3) w ∈ Ad
p if and only if on every dyadic interval J

(II.3)
1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

(〈w〉
I
)−

1
p−1 |I| ≤ K 〈w〉−

1
p−1

J
.
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(4) (Fefferman - Kenig - Pipher inequality) w ∈ Ad
∞ if and only if on every dyadic interval J

(II.4)
1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

|I| ≤ C log[w]Ad
∞
.

The Buckley’s inequality (part (2)) is the one we are mostly interested in since as we will see later
it characterizes class RHd

1 ; it is also the only one stated without the sharp constant. In [Wit] Wittwer
showed that in the case w ∈ Ad

2 Buckley’s inequality holds with K = C[w]Ad
2
and this linear dependence

on the Ad
2 constant of the weight w is sharp, which is the best known result for Buckley’s inequality.

Also, in the Fefferman-Kenig-Pipher inequality the sharp constant is C = 8, it was obtained by Vasyunin
using the Bellman function method in [Va2].

Using the method of Bellman functions we are going to show that in Buckley’s inequality K ≤
C[w]RHd

1
. We also show that the assumption that w is a doubling weight can be dropped. Finally, we

show that the above four sums also satisfy the lower bound estimates in terms of the corresponding
constants. Let us state our second main result in this paper now.

We start with the following lemma, from which Theorem II.1 will follow.

Lemma II.2. Let A(x) be a convex twice differentiable function on (0,∞) such that for all numbers x
and t, such that x, x± t are in the domain of A, the following inequality holds:

(II.5) A(x)−
A(x− t) + A(x+ t)

2
+ α t2A′′(x) > 0,

with some constant α > 0 independent of x and t. Then for every weight w and an interval J the
following inequality holds:

(II.6)
1

|J |

∑

I∈D(J)

(∆Iw)
2
A′′(〈w〉

I
)|I| 6 C

(
〈A(w)〉

J
−A(〈w〉

J
)
)
.

Moreover, if the second derivative of A satisfies the following inequality for every x ∈ (0,∞) and
every ε > 0

(II.7)

∫ 1

−1

(1− |t|) A′′(x+ εt) dt > q A′′(x)

with some positive constant q uniformly on x and ε, then the inequality (II.6) holds with constant
C = 81

q
.

The Bellman function proof of the Lemma II.2 can be found in Section IV.3.

Remark II.3. Note that if the second derivative of A is a monotone function (IV.2) holds trivially with
constant q = 1

2
, which makes Lemma II.2 applicable to a large class of functions producing a number

of new inequalities of Buckley’s type. In particular, function A(x) can be taken A(x) = xp, p > 1,

A(x) = x log x, A(x) = x
− 1

p−1 , p > 1 or A(x) = log x. In what follows we will see how these choices of
the function A(x) imply Buckley’s theorem.

Now we want to introduce the “reverse” lemma, which is true for particular (most interesting for us)
choices of the function A.

Lemma II.4. (1) Let A(x) be a function, defined on (0,∞) such that

(II.8) A(x)−
A(x− t) + A(x+ t)

2
+ β t2A′′(x) > 0,

holds with some positive constant β independent of x and t.
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Then for every weight w and an interval J

(II.9)
1

|J |

∑

I∈D(J)

(∆Iw)
2
A′′(〈w〉

I
) |I| > C

(
〈A(w)〉

J
− A(〈w〉

J
)
)
.

Moreover, condition (II.8) holds for functions A(x) = xp, for all p > 1 and for A(x) = x log x.
(2) If A satisfies the inequality

(II.10) A(x)−
A(x− t) + A(x+ t)

2
+ β t2A′′(x) > 0

whenever 0 < t < C−1
C
x (for C > 1; β depends on C). Then for every doubling weight w and an interval

J

(II.11)
1

|J |

∑

I∈D(J)

(∆Iw)
2
A′′(〈w〉

I
) |I| > C

(
〈A(w)〉

J
− A(〈w〉

J
)
)
,

where the constant C depends on the doubling constant of w.

Moreover, condition (II.10) holds for functions A(x) = x−
1

p−1 for all p > 1 and for A(x) = − log(x).

Bellman Function proof of Lemma II.4 can be found in section IV.4.

Remark II.5. Note that in Lemma II.4, similarly to Lemma II.2, we can also write conditions (II.8)
and (II.10) in the integral form, but in this case (II.8) and (II.10) are easier to check at least for the
functions we are interested in.

From our lemmata, by taking A(x) = xp and A(x) = x
− 1

p−1 p > 1, A(x) = x log x and A(x) = log(x),
we derive the following theorem.

Theorem II.6 (Main result 2 : Representation of bumped averages). Suppose 1 < p <∞ and
w is weight. Then

(1)(case A(x) = xp, p > 1) There are real positive constants c and C independent of the weight w,
such that for every interval J

(II.12) c(〈wp〉
J
− 〈w〉p

J
) 6

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 C(〈wp〉

J
− 〈w〉p

J
).

(2) (case A(x) = x log x) There are real positive constants c and C independent of the weight w, such
that for every interval J

(II.13)

c
(
〈w logw〉

J
− 〈w〉

J
log 〈w〉

J

)
6

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉
I
|I| ≤ C

(
〈w logw〉

J
− 〈w〉

J
log 〈w〉

J

)
.

(3) (case A(x) = x−
1

p−1 ) There is a real positive constant C independent of w, such that for every
interval J

(II.14)
1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉−
1

p−1

I
|I| ≤ C

(〈
w

− 1
p−1

〉

J

− 〈w〉−
1

p−1

J

)
.

Moreover, if w is a doubling weight, then there exists constant c that may depend on the doubling
constant of the weight w, such that for every interval J
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(II.15) c

(〈
w− 1

p−1

〉

J

− 〈w〉−
1

p−1

J

)
6

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉−
1

p−1

I
|I|.

(4) (case A(x) = − log x) There is a real positive constant C independent of w, such that for every
interval J

(II.16)
1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

|I| 6 C(log 〈w〉
J
− 〈logw〉

J
).

Moreover, if w is a doubling weight, then there exists constant c that may depend on the doubling
constant of the weight w, such that for every interval J

(II.17) c(log 〈w〉
J
− 〈logw〉

J
) 6

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

|I|.

Theorem II.6 immediately follows from Lemma II.2, the Remark after it and Lemma II.4. We will
leave its proof to the reader. Instead, let us show how Theorem II.6 implies Buckley’s theorem in the
dyadic and continuous cases and in the case of weak Reverse Hölder classes.

In order to write our results in a more compact way we will start by introducing another way to
define Reverse Hölder and Muckenhout constants. We will call them Buckley’s constants and denote by
[w]RHd,B

p
and [w]Ad,B

p
:

[w]RHd,B
p

:= inf



Q > 1 s.t. ∀J ∈ D

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 Q 〈w〉p

J



 , p > 1,

and similarly we can define continuous Buckley’s Reverse Hölder constants

[w]RHB
p
:= inf



Q > 1 s.t. ∀J ⊂ R

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 Q 〈w〉p

J



 , p > 1.

And similarly for 1 < p <∞ we define dyadic and continuous Buckley’s Muckenhoupt constants:

[w]Ad,B
p

:= inf



Q > 0 s.t. ∀J ∈ D

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉−
1

p−1

I
|I| 6 Q 〈w〉−

1
p−1

J



 ,

and

[w]AB
p
:= inf



Q > 0 s.t. ∀J ⊂ R

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉−
1

p−1

I
|I| 6 Q 〈w〉−

1
p−1

J



 .

and in the A∞ case we have

[w]Ad,B
∞

:= inf



Q > 0 s.t. ∀J ∈ D

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

|I| 6 Q



 ,

and

[w]AB
∞
:= inf



Q > 0 s.t. ∀J ⊂ R

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

|I| 6 Q



 .
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Note that in the Reverse Hölder case in Buckley’s constants we do not need to define separately the
RH1 constants. We are ready to state the result about comparability of Buckley’s constants to the
regular Reverse Hölder and Muckenhoupt constants.

Theorem II.7 ( Main result 2 : comparability of constants in summation conditions).
(1) Suppose 1 < p <∞ then there are positive constants C and c such that for every weight w

c ([w]p
RHd

p
− 1) 6 [w]RHd,B

p
6 C ([w]p

RHd
p
− 1)

and

c ([w]pRHp
− 1) 6 [w]RHB

p
6 C ([w]pRHp

− 1)

(2) In the case p = 1 there are positive constants C and c such that for every weight w

c[w]RHd
1
6 [w]RHd,B

1
6 C[w]RHd

1

and

c[w]RH1 6 [w]RHB
1
6 C[w]RH1 .

(3) For any 1 < p <∞ there is a positive constants C such that for every weight w

[w]Ad,B
p

6 C ([w]
1

p−1

Ad
p

− 1) and [w]AB
p
6 C([w]

1
p−1

Ap
− 1)

(4) In the case p = ∞ there is a positive constants C such that for every weight w

[w]Ad,B
∞

6 C log [w]Ad
∞

and [w]AB
∞
6 C log [w]A∞

.

Moreover, if w is a doubling weight then
(5) For any 1 < p <∞

cd ([w]
1

p−1

Ad
p

− 1) 6 [w]Ad,B
p

and c ([w]
1

p−1

Ap
− 1) 6 [w]AB

p

holds with positive constants cd and c that depend on the (dyadic) doubling constant of the weight w.
(6) In the case p = ∞

cd log [w]Ad
∞
6 [w]Ad,B

∞
and c log [w]A∞

6 [w]AB
∞

holds with positive constants cd and c that depend on the (dyadic) doubling constant of the weight w.

We now show how Theorem II.7 follows from the Theorem II.6. Note also that in parts (5) and (6) of
the Theorem II.7 constant cd and c are different because one depends on the dyadic doubling constant
of the weight w and the other one depends on the continuous doubling constant of w.

Proof. We will prove case (1), all other cases are proved in a similar way with only minor changes and
will be left to the reader.

We will show that the first part of Theorem II.7 follows from the first part of Theorem II.6, from
which we know that there are constants c and C such that for any weight w and interval J ⊂ R

(II.18) c(〈wp〉
J
− 〈w〉p

J
) 6

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 C(〈wp〉

J
− 〈w〉p

J
).

First, we assume that w ∈ RH
(d)
p (dyadic or continuous), which means, by Remark I.3,that for every

(dyadic) interval J ⊂ R

0 6 〈wp〉
J
− 〈w〉p

J
6 ([w]p

RH
(d)
p

− 1) 〈w〉p
J
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So, by inequality II.18 we have that

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 C ([w]p

RH
(d)
p

− 1) 〈w〉p
J
,

hence [w]
RH

(d),B
p

6 C ([w]p
RH

(d)
p

− 1).

Second, assume that w ∈ RH
(d),B
p , so for each (dyadic) interval J ⊂ R

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 [w]

RH
(d),B
p

〈w〉p
J
.

Then from (II.18) we deduce that

〈wp〉
J
− 〈w〉p

J
6

1

c
[w]

RH
(d),B
p

〈w〉p
J
,

which means that w ∈ RH
(d)
p and c ([w]p

RH
(d)
p

− 1) 6 [w]
RH

(d),B
p

.

Parts (2), (3) and (4) of the Theorem II.7 are proved in exactly the same way, using Remarks I.4,
I.1 and I.2 and the corresponding parts of Theorem II.6. The doubling assumptions in (3) and (4) also
come from the Theorem II.6. �

The Theorem II.7 obviously implies Buckley’s theorem (Theorem II.1), but our Theorem II.6 is even
stronger then this. Since Theorem II.6 shows comparability of summations for a given weight with its
bumped averages, we can also write summation conditions for the weak Reverse Hölder classes in the
similar way.

III. Summation Conditions for the Weak Reverse Hölder Classes

In this section we discuss the weak Reverse Hölder class RHWp, p > 1. We remind that the definition
of the RHWp-constant. For simplicity, we drop the superscript d, that referred to dyadic case.

All of the above is true in the continuous case as well, when all suprema are taken over any interval
J ⊂ R. We won’t repeat all the definitions but will refer the reader to [BR].

We also give the definition of so called “weak” reverse Hölder class RHW d
p .

Definition 3. In the dyadic case let J⋆ stand for the dyadic parent of J ∈ D. Then weight w belongs
to the dyadic weak Reverse Hölder class RHW d

p , p > 1, if and only if its weak Reverse Hölder constant
is finite:

(III.1) w ∈ RHW d
p ⇐⇒ [w]RHW d

p
:= sup

J∈D

〈wp〉
1
p

J

〈w〉
J⋆

<∞.

For p = 1 we define the RHW d
1 class as follows:

(III.2) w ∈ RHW d
1 ⇐⇒ [w]dRHW1

:= sup
J∈D

〈
w

〈w〉
J⋆

log
w

〈w〉
J

〉

J

<∞.

In the continuous case, for any interval J ⊂ R let 2J stand for the interval concentric with J of the
length twice the length of interval J . Then weak Reverse Hölder classes RHWp, p > 1 and RHW1 are
defined by

(III.3) w ∈ RHWp ⇐⇒ [w]RHWp
:= sup

J⊂R

〈wp〉
1
p

J

〈w〉
2J

<∞.
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and

(III.4) w ∈ RHW1 ⇐⇒ [w]dRHW1
:= sup

J⊂R

〈
w

〈w〉
2J

log
w

〈w〉
J

〉

J

<∞.

We again note that it is important that in the definitions of RHW d
1 and RHW1 inside the log we

divide by the average of w over the interval J , not by the average over J⋆ or 2J .

Remark III.1. We now explain why the definition of the weak Reverse Hölder constant, (III.2), makes
sense. In fact, in spirit of the formula above, we can define it as

[w]RHW d′′
1

:= sup
I∈D

‖w‖L logL,I

‖w‖L,I⋆
.

Remark III.2. Also note that as in the strong case we can rewrite (III.1), (III.2), (III.3) and (III.4)
as:

w ∈ RHW d
p ⇐⇒ 0 6 〈wp〉

J
6 [w]p

RHW d
p
〈w〉p

J⋆
∀J ∈ D,(III.5)

w ∈ RHW d
1 ⇐⇒ 0 6 〈w logw〉

J
− 〈w〉

J
log 〈w〉

J
6 [w]RHW d

1
〈w〉

J⋆
∀J ∈ D,(III.6)

w ∈ RHWp ⇐⇒ 0 6 〈wp〉
J
6 [w]pRHWp

〈w〉p
2J

∀J ⊂ R,(III.7)

w ∈ RHW d
1 ⇐⇒ 0 6 〈w logw〉

J
− 〈w〉

J
log 〈w〉

J
6 [w]RHW d

1
〈w〉

2J
∀J ⊂ R.(III.8)

Definition 4. We are ready to define dyadic and continuous weak Buckley Reverse Hölder constants
now in the most natural way. For any p > 1 let

[w]RHW d,B
p

:= inf



Q > 0 s.t. ∀J ∈ D

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 Q 〈w〉p

J⋆





and

[w]RHWB
p
:= inf



Q > 0 s.t. ∀J ⊂ R

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 Q 〈w〉p

J⋆



 .

Now we are ready to state the following theorem, which is also a consequence of the Theorem II.17.

Theorem III.3. A weight w belongs to RHW d
p if and only if the weak Buckley constant, [w]RHW d,B

p
, is

finite. Moreover, there exist positive constants C1 that does not depend on w and p and C2 that may
depend on p, such that for any p > 1

[w]RHW d,B
p

6 C1[w]
p
RHW d

p
and [w]RHW d

p
6 C2([w]RHW d,B

p
+ 1)

1
p

and same in the continuous case

[w]RHWB
p
6 C1[w]

p
RHWp

and [w]RHWp
6 C2([w]RHWB

p
+ 1)

1
p .

In the case p = 1 there are positive constants C and c such that

c[w]RHd,B
1

6 [w]RHd
1
6 C[w]RHd,B

1

and

c[w]RH1 6 [w]RHB
1
6 C[w]RH1 .

Proof. Proofs for continuous and dyadic cases are identical, so we will do both continuous and dyadic
cases simultaneously.
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For p > 1, by Theorem II.6, part (1) we know that for any weight w and any interval J the following
holds:

(III.9) c(〈wp〉
J
− 〈w〉p

J
) 6

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 C(〈wp〉

J
− 〈w〉p

J
).

Note that 〈w〉
J
is nonnegative, so if w belongs to the (dyadic or continuous) class RHW d

p by (III.5) or

(III.7) we have that for every (dyadic) interval J ⊂ R

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 C 〈wp〉

J
6 C[w]p

RHW
(d)
p

〈w〉p
F (J)

,

where F (J) is either the dyadic parent of J or 2J . So [w]
RHW

(d),B
p

6 C[w]p
RHW

(d)
p

. To prove the reverse

inequality we assume that w is in (dyadic or continuous) RHW
(d),B
p , then

c(〈wp〉
J
− 〈w〉p

J
) 6

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉p
I
|I| 6 [w]

RHW
(d),B
p

〈w〉p
F (J)

,

from which we conclude that 〈wp〉
J
6 1

c
[w]

RHW
(d),B
p

〈w〉p
F (J)

+ 〈w〉p
J
. Note that 〈w〉

J
6 2 〈w〉

F (J)
, so

〈wp〉
J
6

(
1

c
[w]

RHW
(d),B
p

+ 2p
)
〈w〉p

F (J)
,

Which implies that [w]
RHW

(d)
p

6

(
1
c
[w]

RHW
(d),B
p

+ 2p
) 1

p

and completes the proof of the theorem for p > 1.

For p = 1 we use the comparability (part (2) of Theorem II.6):

c
(
〈w logw〉

J
− 〈w〉

J
log 〈w〉

J

)
6

1

|J |

∑

I∈D(J)

(
∆Iw

〈w〉
I

)2

〈w〉
I
|I| ≤ C

(
〈w logw〉

J
− 〈w〉

J
log 〈w〉

J

)

together with the definitions of dyadic and continuous RHW
(d)
1 (III.6) and (III.8). This proof is similar

to the continuous case is left to the reader. �

Remark III.4. We notice that we have proved the theorem for any pairs (J, F (J)), which satisfy the
following two conditions:

(1) J ⊂ F (J), and
(2) |J | > c|F (J)|.

IV. Bellman Function Proofs

IV.1. Some history. We now proceed to the Bellman-type proofs. Before we do it, we would like to
make some historical overview.

Bellman function, related to investigation of weights by their own (i.e., not related to linear operators
in weighted spaces), has been exploit in different papers. Such properties as Reverse Hölder, Lp estimates
and distribution functions of Ap weights were investigated in works [Va1], [R], [DiWa]. In all these works
the Bellman function was found for continuous Ap. We strongly refer the curious reader to these papers,
since the search for Bellman function and extremal examples are given there in details.

Aside from these three papers, the theory of BMO weights was developed in [SlVa]. In this paper,
together with the continuous BMO, authors considered the dyadic one. The dyadic problem appeared
to be much more delicate in some sense, and required a lot of additional calculations. In what follows,
we use several parts of the dyadic proof from [SlVa]. It appears that in our case the same steps give the
proof. However, some parts of our proof are more delicate.
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We now point out two difficulties that we have. First of all, functions in [SlVa] were absolutely
explicit. In our case, as the reader will see, many ingredients are given implicitly, which makes things
a little more complicated.

The main difficulty, though, is not the fact that we have implicit functions. In [SlVa] authors noticed
that the domain of their Bellman function has the following property: it can be enlarged, with a good
estimate of this “enlargement”, such that if endpoints and center of some interval are in the smaller
domain, then the whole interval is in the enlarged domain. It immediately implied that, if we do not care
about sharp constants, we can get some nice estimates in dyadic case immediately from the continuous
case.

In the Remark IV.11 we prove that the domain of our Bellman function does not have this property.
Therefore, without additional investigation, we can not make any dyadic statements. This means that
we are “forced” to care about best constants and run a variant of the proof from [SlVa].

We also refer the reader to another dyadic problem, [VaVo1]. Authors obtained the exact Bellman
function too. However, the domain of their function was convex, and, therefore, obviously had the above
property.

In [BR] authors introduced a certain function of two variables, that allows to prove the continuous
case of the inequality.

We sketch the definition and application of this function and discuss the main difficulty of the dyadic
problem.

We will start with the Bellman function proofs of the summation conditions (inequalities II.4 - II.1)
since they are simpler then the prove of theorem I.5, which is much harder.

IV.2. Technical details. In this section we want to prove the following proposition.

Proposition 1. (1) For any monotone non negative function f(x) the following inequality holds for
some constant C: ∫ 1

−1

(1− |t|)f(x+ εt)dt > Cf(x).

(2) If A(x) satisfies ∫ 1

−1

(1− |t|)A′′(x+ εt)dt > qA′′(x)

then for some α > 0

A(x)−
A(x− t) + A(x+ t)

2
+ αt2A′′(x) 6 0.

(3) If A(x) = xp, p > 1, then for some β > 0

A(x)−
A(x− t) + A(x+ t)

2
+ βt2A′′(x) > 0

(4) Let C > 1 and A(x) = x−
1

p−1 . Then there exists an α, depending only on p and C, such that the
following inequality holds for any t, 0 < t < C−1

C
x:

A(x)−
A(x+ t) + A(x− t)

2
+ βt2A′′(x) > 0.

Moreover, one can take

β =
p− 1

p′

(
(

C

C − 1
)2 ·

(2C−1
C

)−
1

p−1 + ( 1
C
)−

1
p−1

2
− (

C

C − 1
)2

)

The first part. Suppose f is increasing. Then
∫ 1

−1

(1− |t|)f(x+ εt)dt >

∫ 1

0

(1− |t|)f(x+ εt)dt > f(x)

∫ 1

0

(1− |t|)dt.
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If f is decreasing then we consider the integral over (−1, 0), which finishes the proof of the first part. �

The second part. Let x(s) = (x−t)(1−s)+(x+t)(1+s)
2

, and a(s) = A(x(s)). Then we would like to estimate
the quantity

(IV.1) a(0)−
a(1) + a(−1)

2
= −

1

2

∫ 1

−1

(1− |s|)a′′(s)ds =

= −
1

2
· (2t)2

∫ 1

−1

(1− |s|)A′′(x(s))ds = −c · t2
∫ 1

−1

(1− |s|)A′′(x+ st)ds.

Thus,

A(x)−
A(x− t) + A(x+ t)

2
6 −c · t2A′′(x),

which is exactly what we want.
�

The third part. Due to the homogeneity, this inequality is equivalent to the following:

f(u) := up −
(u+ 1)p + (u− 1)p

2
+ βup−2 > 0, u > 1

We notice that f is continuous, and lim
u→∞

f(u)
up−2 is finite. Therefore, such β exists. �

The fourth part. Again using homogeneity, we reduce our problem to the following: the function

f0(u) = u−
1

p−1 −
(u− 1)−

1
p−1 − (u+ 1)−

1
p−1

2
+ γu−2− 1

p−1

should be non-negative, when u > C
C−1

. Here γ = α p′

p−1
.

We multiply by u2+
1

p−1 and, denoting v = u−1, we need

f1(v) =
1

v2
−

(1− v)−
1

p−1 + (1 + v)−
1

p−1

2v2
+ γ > 0,

or the function

f(v) =
1

v2
−

(1− v)−
1

p−1 + (1 + v)−
1

p−1

2v2

should be bounded from below, whenever 0 < v < C−1
C

.
We prove the following:

Lemma IV.1 (Sublemma). f(v) is decreasing.

If we prove the sublemma, we get

f(v) > f

(
C − 1

C

)
,

and, therefore,

γ = −f

(
C − 1

C

)
.

�

Proof of sublemma. We prove this proposition by straightforward differentiation. First,

v2f(v) = 1−
(1− v)−

1
p−1 + (1 + v)−

1
p−1

2
,

and so

2vf(v) + v2f ′(v) =
1

p− 1

(1 + v)−1− 1
p−1 − (1− v)−1− 1

p−1

2
,
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thus

v2f ′(v) =
1

p− 1

(1 + v)−1− 1
p−1 − (1− v)−1− 1

p−1

2
−

2

v
+

(1− v)−
1

p−1 + (1 + v)−
1

p−1

v

We would like to prove that f ′(v) < 0 or, equivalently, the right-hand side is negative. We multiply
by v to get (after simple algebra)

v3f ′(v) = (1 + v)1−p′ p
′ + 1

2
+ (1− v)1−p′ p

′ + 1

2
− ((1 + v)−p′ + (1− v)−p′)

1

2(p− 1
− 2 =: ψ(v).

Clearly, ψ(0) = 0. Next,

ψ′(v) =
(1− p′)(p′ + 1)

2
(1 + v)−p′ −

(1− p′)(p′ + 1)

2
(1− v)−p′ +

p′

2(p− 1)
((1 + v)−1−p′ − (1− v)−1−p′),

ψ′′(v) =
p′(p′ + 1)

2(p− 1)
· v · ((1 + v)−2−p′ − (1− v)−2−p′).

Thus, ψ′′(v) 6 0, thus ψ′(v) 6 ψ′(0) = 0, and so ψ(v) 6 ψ(0) = 0, which is what we want. �

IV.3. Bellman Function Proof of Lemma II.2. We remind that A(x) be a convex twice differen-
tiable function on (0,∞) such that for every x ∈ (0,∞) second derivative of A satisfies the following
inequality for every ε > 0

(IV.2)

∫ 1

−1

(1− |t|)A′′(x+ εt)dt > QA′′(x)

holds with some positive constant Q uniformly on x and ε.
Then for every weight w and an interval J

(IV.3)
1

|J |

∑

I∈D(J)

(
〈w〉

I+
− 〈w〉

I−

)2
A′′(〈w〉

I
)|I| 6 8

1

Q

(
〈A(w)〉

J
− A(〈w〉

J
)
)
.

Proof. Take a function of two variables B(u, v) = v − A(u). Then, as we have proved,

B(u, v)−
B(u− t, v − s) +B(u+ t, v + s)

2
= −

(
A(u)−

A(u− t) + A(u+ t)

2

)
> αt2A′′(u),

whenever B is defined at points we write.
We now take a weight w. Then 〈w〉

I+
+ 〈w〉

I−
= 2 〈w〉

I
, and so 〈w〉

I±
= 〈w〉

I
± t. Therefore,

B(〈w〉
J
, 〈A(w)〉

J
) >

B(〈w〉
J+
, 〈A(w)〉

J+
) +B(〈w〉

J−
, 〈A(w)〉

J−
)

2
+ α(∆Jw)

2A′′(〈w〉
J
).

We rewrite this inequality in the following form:

|J |B(〈w〉
J
, 〈A(w)〉

J
) > |J+|B(〈w〉

J+
, 〈A(w)〉

J+
) + |J−|B(〈w〉

J−
, 〈A(w)〉

J−
) + α(∆Jw)

2A′′(〈w〉
J
)|J |.

Now we repeat this estimate down to n-th descendants of J . We denote this family by Dn(J). We get

|J |B(〈w〉
J
, 〈A(w)〉

J
) >

∑

I∈Dn(J)

|I|B(〈w〉
I
, 〈A(w)〉

I
) + α

∑

k6n

∑

I∈Dk(J)

(∆Iw)
2A′′(〈w〉

I
)|I|.

Using that B > 0 whenever v > A(u), which in our case is just Jensen’s inequality, we get

|J |B(〈w〉
J
, 〈A(w)〉

J
) > α

∑

k6n

∑

I∈Dk(J)

(∆Iw)
2A′′(〈w〉

I
)|I|.

Since the last estimate is true for any n, we pass to the limit and get

|J |B(〈w〉
J
, 〈A(w)〉

J
) > α

∑

I∈D(J)

(∆Iw)
2A′′(〈w〉

I
)|I|.
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But this is exactly what we want. Our proof is finished. �

IV.4. Proof of the “inverse” lemma II.4.

Proof. We follow the skim of the previous proof. Take a function

B(u, v) = αv + A(u).

Then B satisfies the following inequality:

B(x)−
B(x + t, y + s− t2A′′(x)) +B(x− s, y − s− t2A′′(x))

2
= A(x)−

A(x − t) + A(x+ t)

2
+αt2A′′(x) > 0.

The last inequality is true for A(x) = xp or A(x) = x log x without additional assumptions, or for

A(x) = x−
1

p−1 or A(x) = − log(x), if t < C−1
C
x.

We now take a weight w. If w is doubling (which we need only for the second part), then there exists
a constant D(w), such that for any dyadic interval J the following is true:

〈w〉
J
6 D(w) 〈w〉

J±
.

If now 〈w〉
J±

= 〈w〉
J
± t = x± t, then

x 6 D(w)(x− t),

which implies

t 6
C − 1

C
x

for C = D(w).
We now denote uI = 〈w〉

I
and vI =

1
|I|

∑
R∈D(I)

(∆R(w))
2A′′(〈w〉

R
)|R|.

We notice that if uI± = uI ± t then

vI −
vI+ + vI−

2
= (∆I(w))

2A′′(〈w〉
I
) = t2A′′(〈w〉

I
) = t2A′′(uJ).

So, vI± = vI ± s− t2A′′(〈w〉
I
). Therefore, by our inequality for B, we get

B(uJ , vJ)−
B(uJ+) +B(uJ−)

2
> 0.

By the usual procedure, we get

|J |B(uJ , vJ) >
∑

I∈Dn(J)

|I|B(uI , vI).

We now introduce sequence of step functions: for a fixed n we take the family {I : I ∈ Dn(J)}, and

un(t) = uI , t ∈ I,

vn(t) = vI , t ∈ I.

Then the last inequality is the same as

|J |B(uJ , vJ) >

∫

J

B(un(t), vn(t))dt.

We now notice that B(u, v) = αv + A(u) > A(u), so

|J |B(uJ , vJ) >

∫

J

A(un(t))dt.
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By Fatou’s lemma,

|J |B(uJ , vJ) > lim inf
n

∫

J

A(un(t))dt >

∫

J

lim inf
n

A(un(t))dt =

∫

J

A(w(t))dt.

The last is true since for almost every t, by the Lebesgue Differentiation Theorem, we have un(t) → w(t),
and because A is a continuous function.

Dividing by |J |, we finally get αvJ + A(uJ) > 〈A(w)〉
J
, which finishes our proof. �

IV.5. Proof of Main Theorem I.

IV.5.1. Notation and definition of function B. For a point z = (x, y) ∈ R
2 we denote [z] = xe−y. For

any number Q, Q > 1, we define the domain ΩQ as follows:

ΩQ = {z = (x, y) : 1 6 [z] 6 Q},

and the boundaries of ΩQ are

Γ = {z : [z] = 1}

ΓQ = {z : [z] = Q}.

With any point z ∈ ΩQ we associate two numbers: v and a. We take our point z and consider the line
ℓ(z), tangent to ΓQ, that “kisses” ΓQ on the right-hand side from z. The point ℓ(z) ∩ ΓQ is denoted by
(a, log a

Q
). Now we draw ℓ(z) to the left until it intersects Γ, and the point of intersection is denoted by

(v, log(v)). Notice that v 6 x 6 a.
More carefully, let γ = γ(Q), γ 6 1, be the smaller solution of equation

γ − log(γ)− 1 = log(Q).

Then the line ℓ(z) is given by a formula

y =
γ · x

v
+ log(v)− γ.

This equation defines a unique v, such that v 6 x. Moreover, a is given by v = γ · a. We are ready to
introduce the Bellman Function. We give an explicit formula:

BQ(z) = BQ(x, y) = x · log(v) +
x− v

γ
.

Remark IV.2. The equation on t, t− log(t) = log(u), it rather famous and developed. In the mathe-
matical program Maple this solution can be obtained using a command

−LambertW (−
1

u
).

Several inequalities in next sections can be checked by graphing related functions. The second author
wants to emphasize his gratitude to developers of Maple.

IV.5.2. Main theorems and discussion. The following theorem was proved in [BR].

Theorem IV.3. The function BQ(z) has following properties:

(1) BQ(v, log(v)) = v log(v).
(2) B is smooth in ΩQ, and locally concave in ΩQ. Namely, if z1, z2 ∈ ΩQ, z = sz1 + (1 − s)z2 for

some s ∈ [0, 1] and {tz1 + (1− t)z2} ⊂ ΩQ then

B(z) > sB(z1) + (1− s)B(z2).

(3) For every point z = (x, y) ∈ ΩQ there exists a function w, [w]∞ 6 Q, such that 〈w〉 = x,
〈log(w)〉 = y, and 〈w log(w)〉 = B(x, y).

This theorem implies the following (see [BR]).



18 O. BEZNOSOVA AND A. REZNIKOV

Theorem IV.4. The following equality holds:

BQ(x, y) = sup{〈w log(w)〉 : 〈w〉 = x, 〈log(w)〉 = y, [w]∞ 6 Q}.

We sketch the proof of this theorem.

Proof. The third property of B implies that BQ(x, y) is not strictly bigger than the right-hand side. For
the other direction, we take a point z = (x, y) ∈ ΩQ and a function w, such that 〈w〉 = x, 〈log(w)〉 =
y, [w]∞ 6 Q. We now take two intervals I±, such that I+ ∪ I− = I, I+ ∩ I− =right end of I−. We take

(IV.4) z± = (x±, y±) = (〈w〉
I±
, 〈log(w)〉

I±
) ∈ ΩQ.

Assuming that the interval [z−, z+] lies in ΩQ, we write

B(z) >
|I−|

|I|
B(z−) +

|I+|

|I|
B(z+).

Repeating this procedure, we get

B(z) >

N∑

n=1

|In|

|I|
B(zn),

where zn = (〈w〉
In
, 〈log(w)〉

In
). We now introduce a pair of step functions. Let

uN(t) =
N∑

n=1

〈w〉
In
χIn(t),

vN(t) =
N∑

n=1

〈log(w)〉
In
χIn(t).

Then we have

B(z) >

∫

I

B(uN(t), vN(t))dt.

If w is separated from 0 and ∞ then, by the Lebesgue theorem, we get that

uN(t) → w(t) a.e.

vN(t) → log(w(t)) a.e..

Therefore,

B(z) >

∫

I

B(w(t), log(w(t)))dt =

∫

I

w(t) log(w(t))dt = 〈w log(w)〉 .

In the chain above we used that B is bounded on compact sets, so we can apply the Lebesgue Dominated
Convergence Theorem, and the second property of the function B. The proof is finished. �

Remark IV.5. Careful reader can see two gaps in the proof above. First, we never introduced a proper
procedure of choosing intervals I±. And second, we focused on bounded functions w (and separated from
0) without saying anything about the general case. We refer to the paper [BR], where all details are
given.

Remark IV.6. We now point out the main difficulty of the dyadic case. In the proof above we had a
formula (IV.4). We claimed that z± = (x±, y±) = (〈w〉

I±
, 〈log(w)〉

I±
) ∈ ΩQ. In the dyadic case though

this can be claimed only if I± are dyadic intervals! Therefore, we do not have any procedure of choosing
I± except for splitting I in two halves, et cetera. The main problem now is that we can never be sure
that the segment [z−, z+] lies entirely in the domain ΩQ.
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After these two remarks we state the main theorem, that works for dyadic setting. Let BQ be a
function, described above, defined in the domain ΩQ. For any Q0 > Q we define ΩQ0 = Ω0, γQ0 = γ0,
vQ0 = v0, aQ0 = a0, and BQ0(z) = B0(z) as we did for Q. Then

Theorem IV.7. There exists a constant C, which does not depend on Q, and a number Q0, such that
1 < Q < Q0 < CQ, and such that the function B0 has the following additional property: whenever
z, z+, z− ∈ ΩQ, and z =

z++z−
2

, the following inequality holds:

2B0(z) > B0(z+) +B0(z−).

If r =
√
1− 1

Q
then Q0 is given by equation

(1− r) log(γ0) +
1− r

γ0
− (1− r)− (1− r) log(1− r)− (1 + r) log(1 + r) = 0.

Remark IV.8. We notice that this equation defines γ0, which immediately defines Q0.

Remark IV.9. The following thing happened. We claim that we can take a larger domain and a function
BQ0, which is bigger than BQ, and which has the property: if three points z, z±, described above, lie in
the small domain ΩQ, then 2B0(z) > B0(z+) + B0(z−), even though the interval [z−, z+] does not lie
even in ΩQ0.

The fact that the solution Q0 of the equation above can be bounded by CQ will be proved later. To
emphasize the difficulty of the problem we prove a lemma, that shows the difference of our problem
from the problem solved in [SlVa].

Lemma IV.10. For any constant C, C > 0, there exists a number Q, Q > 1, and three points
z, z± ∈ ΩQ, such that 2z = z+ + z−, and such that for some value of t ∈ (0, 1) we have the following:

[tz+ + (1− t)z−] > CQ.

Remark IV.11. This lemma shows that for any given Q0 = CQ there may be three points in ΩQ, such
that the interval [z−, z+] does not lie entirely in ΩQ0.

We note that in [SlVa] such constant C existed, which did not simplify the search for the very best
constant, but would give us linear dependence on [w]∞ at once. If this was the case, we would simply
take Q0 = CQ, and since z±, z ∈ ΩQ implied [z−, z+] ∈ ΩQ0, where BQ0 is locally concave, we would get
2BQ0(z) > BQ0(z+) +BQ0(z−).

Since such C does not exist, we are forced to continue our investigation.

Proof. This is an easy calculation. In fact, these points are z− = (1 − r, log 1−r
Q
), z = (1, log 1

Q
), and

z+ = (1 + r, log(1 + r)). �

As a main consequence of Theorem IV.7 we get the following.

Theorem IV.12. For every point z = (x, y) ∈ ΩQ the following inequality holds:

B0(z) > sup{〈w log(w)〉 : 〈w〉 = x, 〈log(w)〉 = y, [w]d∞ 6 Q}.

Proof. We take a point z, 1 6 [z] 6 Q, and a function w, such that 〈w〉 = x, 〈log(w)〉 = y, and
[w]d∞ 6 Q.
IV.5.2.A. Case 1: w is bounded away from 0 and ∞. We take I0 = I, I11,2 — left and right halves of I.

Then I21,2,3,4 are quarters of I, et cetera. For every k, n we have zkn(〈w〉
Ikn
, 〈log(w)〉

Ikn
) ∈ ΩQ, and every

zkn is a center of interval, that corresponds to “sons” of Ikn . Therefore, for a fixed k,

B0(z) >
∑

n

|Ikn|

|I|
B0(z

k
n) =

∫

I

B0(uk(t), vk(t))dt,
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where

uk(t) =
∑

n

〈w〉
Ikn
χIkn

(t),

vk(t) =
∑

n

〈log(w)〉
Ikn
χIkn

(t).

Since w is separated from 0 and ∞, we get

uk(t) → w(t), a.e.

vk(t) → log(w(t)), a.e..

Since we have countably many intervals {Ikn}n,k, the set Z = {zkn} is a compact, and thus the function
B0 is bounded on Z. Therefore, by Lebesgue Dominated Convergence Theorem,

B0(z) > 〈w log(w)〉 .

IV.5.2.B. Case 2: arbitrary w. We sketch the proof here, as it is the same as in [BR]. We take

wn(t) =





n, w(t) > n

w(t), 1 6 w(t) 6 n

1, w(t) 6 1.

Then, as it follows from [RVV], [wn]
d
∞ 6 Q. By the previous case we get

B0(z) > 〈wn log(wn)〉 =

∫

{t : w(t)>1}

wn log(wn).

On the set {t : w(t) > 1} the sequence wn(t) log(wn)(t) increases to w(t) log(w(t)), and passing to the
limit, we get

B0(z) >

∫

{t : w(t)>1}

w(t) log(w(t))dt >

∫

I

w(t) log(w(t))dt = 〈w log(w)〉 .

The last inequality holds simply because on the set w(t) < 1 we have w(t) log(w(t)) 6 0.
Our proof is now finished. �

The rest of this section is devoted to the proof of the Theorem IV.7. The uncurious reader can skip
this proof since it does not involve any weight theory.

IV.5.3. Proof of the Theorem IV.7: reminder. At first we would like to remind the reader some notation.
We fix a number Q, Q > 1. In what follows the number Q0 is always bigger than Q.

For every point z = (x, y), such that xe−y ∈ [1, Q] we denote [z] = xe−y. Moreover, numbers γ0,
v = v0 and a = a0 are defined implicitly by

γ0 − log(γ0) = 1 + log(Q0),(IV.5)

y =
γ0 · x

v
+ log(v)− γ0,(IV.6)

a =
v

γ0
.(IV.7)

In what follows points z± are such that 2z = z+ + z−, and v±, a± are defined as above for these points.
Our “larger” function is defined as:

B0(x, y) = x · log(v) +
x− v

γ0
.
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Furthermore,

ΓQ = {z : [z] = Q},

ΓQ0 = {z : [z] = Q0},

Γ = Γ1 = {z : [z] = 1}.

We sometimes refer to ΓQ as to a Q-boundary and to ΓQ0 as to a Q0-boundary. We start with the
following easy lemma.

Lemma IV.13. Suppose F (x, y, x+, y+, x−, y−) = 2B0(x, y)−B0(x−, y−)−B0(x+, y+). If F (x, y, x+, y+, x−, y−)
0 then for every number C, C > 0, the following holds: F (Cx, y + log(C), Cx+, y+ + log(C), Cx−, y− +
log(C)) > 0.

Proof. This lemma follows immediately from the homogeneity of B0, namely, B0(Cx, y + log(C)) =
Cx log(C) + CB0(x, y). �

This lemma allows us to choose C = 1
x
and always think that x = 1.

We first start with positions of z, z± that are supposed to be “worst” in some sense. Later we shall
see that in fact the next section is not needed at all. However, for the sake of completeness we keep it.
IV.5.3.A. Remark about notation. Abusing notation, we always denote by ∆ the following expression:

∆ = 2B0(z)− B0(z+)−B0(z−).

However, in different sections the same letter ∆ will depend (and be differentiated) on different variables.
We will always specify on which variables it depends.

IV.5.4. Proof of the Theorem IV.7. First step. We start our investigation from the case when z±, z are
on the boundary of ΩQ. Since z, z± are going to be fixed, ∆ will depend only on Q0.

Our first case is when two of them are on ΓQ and the third is on Γ. Second case is when two of them
are on Γ and the third is on ΓQ. Moreover z ∈ ΓQ always.
IV.5.4.A. z− ∈ ΓQ and z+ ∈ Γ. We have z = (1, log 1

Q
).

We denote z+ = (1 + r, log(1 + r)) and z− = (1 − r, log 1−r
Q

), r > 0. Then, since 2y = y+ + y−, we

obtain, 2 log 1
Q
= log 1−r2

Q
, so r2 = 1− 1

Q
, and thus r =

√
1− 1

Q
. Then we have:

z− = (1− r, log
1− r

Q
), z = (1, log

1

Q
), z+ = (1 + r, log(1 + r)).

We prove the following theorem.

Theorem IV.14. Take Q0 = Q. Then we get γ0 = γ, B0 = B, and v, associated to Q. Denote

∆ = ∆(Q) = 2B(z)− B(z−)− B(z+).

Then ∆ > 0.

We notice that now ∆ depends on Q, and Q is a variable, that is bigger than 1.
This theorem, together with next lemma, gives us what we want.

Lemma IV.15. For fixed points z, z± ∈ ΩQ, ∆(Q0) = 2B0(z) − B0(z−) − B0(z+) is an increasing
function with respect to Q0 on the set {Q0 : Q0 > Q}.

The second lemma shows that if our initial B was “concave” enough, then the “enlarged” B0 is also
“concave” enough.

Proof of the Lemma IV.15. By definition,

z− = (1− r, log
1− r

Q
), z = (1, log

1

Q
), z+ = (1 + r, log(1 + r)).
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We have points v, v± ∈ Γ, associated with z, z± and calculated in the enlarged domain. Namely,

γ0 − log(γ0) = 1 + log(Q0)(IV.8)

log
1

Q
=
γ0

v
+ log(v)− γ0(IV.9)

log
1− r

Q
=
γ0(1− r)

v−
+ log(v−)− γ0,(IV.10)

v+ = 1 + r.(IV.11)

In particular we see that v− = (1− r)v. Since

B0(z) = x log(v) +
x− v

γ0
,

and since 2x− x+ − x− = 0, one gets

(IV.12) ∆(Q0) = 2 log v − (1− r) log(v−)− (1 + r) log(v+)−
1

γ0
(2v − v− − v+) =

= 2 log v − (1− r) log(v)− (1− r) log(1− r)− (1 + r) log(1 + r)−
1

γ0
(2v − (1− r)v − (1 + r)) =

= (1 + r)(log(v)−
v − 1

γ0
)− (1− r) log(1− r)− (1 + r) log(1 + r).

Last two terms do not depend on Q0 at all, so we consider only

f(Q0) = log(v)−
v − 1

γ0
.

We clearly have

γ′0 −
γ′0
γ0

=
1

Q0
,

so

γ′0 =
γ0

(γ0 − 1)Q0
.

Differentiating the equality

log
1

Q
=
γ0

v
+ log(v)− γ0

with respect to Q0, we get

0 =
γ′0
v

−
γ0

v2
v′ +

v′

v
− γ′0,

so

0 =
v′

v

(
1−

γ0

v

)
− γ′0

(
1−

1

v

)
,

v′

v

v − γ0

v
=
v − 1

v

γ0

(γ0 − 1)Q0
,

v′

v
=

1− v

v − γ0

1

1− γ0

γ0

Q0

.

Now let us differentiate f(Q0). We remind that

f(Q0) = log(v)−
v − 1

γ0
= log(v) +

1− v

γ0
,
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so

(IV.13) f ′(Q0) =
v′

v
+

−v′γ0 − γ′0(1− v)

γ20
=

=
1− v

v − γ0

1

1− γ0

γ0

Q0
−
v′

γ0
−

γ0(1− v)

(γ0 − 1)Q0

1

γ20
=

1− v

v − γ0

1

1− γ0

γ0

Q0
−

1− v

v − γ0

1

1− γ0

v

Q0
+

1− v

1− γ0

1

Q0γ0
=

=
1− v

(1− γ0)Q0

(
γ0

v − γ0
−

v

v − γ0
+

1

γ0

)
=

1− v

(1− γ0)Q0

(
1

γ0
− 1

)
> 0,

since v < 1, and γ0 < 1.
This finishes the proof. �

Proof of the theorem. We go back to Q, γ, B, and v, calculated for γ. We remind that in the statement
of the theorem Q0 = Q.

Recall that

z− = (1− r, log
1− r

Q
), z = (1, log

1

Q
), z+ = (1 + r, log(1 + r)).

Our v, v± can be written explicitly in terms of γ. Indeed,

v− = γ(1− r)(IV.14)

v = γ(IV.15)

v+ = 1 + r.(IV.16)

Then

(IV.17)

∆ = 2B(z)−B(z−)−B(z+) = 2(log(γ)+
1− γ

γ
)−((1−r) log(γ(1−r))+

1− r − (1− r)γ

γ
)−(1+r) log(1+r) =

= 2 log(γ) +
2

γ
− 2− (1− r) log(γ)− (1− r) log(1− r)−

1− r

γ
+ (1− r)− (1 + r) log(1 + r) =

= (1 + r) log(γ) +
1 + r

γ
− (1 + r)− (1− r) log(1− r)− (1 + r) log(1 + r).

We notice that 1− r2 = 1
Q
, so log(1 + r) = log 1

Q
− log(1− r). Therefore,

(IV.18) ∆ = (1 + r)

(
log(γ) +

1

γ
− 1− log

1

Q

)
− (1− r) log(1− r) + (1 + r) log(1− r) =

= (1 + r)

(
log(γ) + log(Q) +

1

γ
− 1

)
+ 2r log(1− r) = (1 + r)

(
γ +

1

γ
− 2

)
+ 2r log(1− r).

We would like to say that ∆ > 0. Surprisingly, we can do it. Here is the chain of awful estimates.
We denote

f(Q) = ∆.

Notice that

γ′(Q) =
γ

Q(γ − 1)
r
′

(Q) =
1

2rQ2
.

The last one is true since r2 − 1 = − 1
Q
.

We notice that if Q = 1 then r = 0 and γ = 1, so f(1) = 0. We claim that f ′(Q) > 0, which will give
the desired result.

We have

f ′(Q) = (γ +
1

γ
− 2)

1

2rQ2
+ (1 + r)(1−

1

γ2
)

γ

Q(γ − 1)
+ (2 log(1− r)−

2r

1− r
)

1

2rQ2
.
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We notice that γ + 1
γ
− 2 > 0 and we throw it away. Therefore,

f ′(Q) > (1 + r)(1−
1

γ2
)

γ

Q(γ − 1)
+ (2 log(1− r)−

2r

1− r
)

1

2rQ2
=

1 + r

Q

γ + 1

γ
+

log(1− r)

rQ2
−

1

Q2

1

1− r
.

We now use that
1

1− r
=

1 + r

1− r2
= Q(1 + r),

thus

(IV.19) f ′(Q) >
1

Q

[
1 + r +

1 + r

γ
+

log(1− r)

rQ
−
Q(1 + r)

Q

]
=

=
1

Q

[
1 + r +

1

Qγ(1− r)
+

log(1− r)

rQ
− (1 + r)

]
=

=
1

Q2r

[
r

γ(1− r)
+ log(1− r)

]
.

Finally, 0 6 1− r < 1, so r
γ(1−r)

> r
γ
, and therefore

f ′(Q) >
1

Qr2

[
r

γ
+ log(1− r)

]
.

We now denote

g(Q) =
r

γ
+ log(1− r).

Again, g(1) = 0. We are going to prove that g′(Q) > 0. Indeed,

g′(Q) =
1

γ

1

2rQ2
−

r

γ2
γ

Q(γ − 1)
−

1

1− r

1

2rQ2
=

1

2rQ2

[
1

γ
−

1

1− r
−

2r2Q

γ(γ − 1)

]
.

But r2Q = (1− 1
Q
)Q = Q− 1, which implies

(IV.20) g′(Q) =
1

2rQ2

[
1

γ
−

1

1− r
− (Q− 1)

2

γ(γ − 1)

]
=

=
1

2rQ2

[
1

γ
−

1

1− r
− 2(Q− 1)(

1

γ − 1
−

1

γ
)

]
=

=
1

2rQ2

[
1

γ
−

1

1− r
− 2

Q− 1

γ − 1
+

2Q

γ
−

2

γ

]

Again 1
1−r

= Q(1 + r), so

2rQ2 · g′(Q) = −
1

γ
+ 2

Q− 1

1− γ
+

2Q

γ
−Q(1 + r) =

Q− 1

γ
+ 2

Q− 1

1− γ
+Q(

1

γ
− r − 1).

First two terms are clearly non negative. To check that the last one is non negative we do the following.
γ satisfies the equation ϕ(t)− log(Q) = 1, where ϕ(t) = t− log(t). ϕ is a decreasing function if t ∈ (0, 1].
So if we prove that ϕ( 1

1+r
)− log(Q) 6 1 then we get that 1

1+r
> γ, which means that 1

γ
> 1 + r. Thus,

ϕ(
1

1 + r
)− log(Q) =

1

1 + r
+ log(1 + r)− log(Q);

the derivative of this expression is
(

1

1 + r
−

1

(1 + r)2

)
1

2rQ2
−

1

Q
=

1

Q

[
r

(1 + r)2
1

2rQ2
− 1

]
=

1

Q

[
1

2Q2(1 + r)2
− 1

]
.
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Since Q > 1, r > 0, we have 2Q2(1 + r)2 > 2, so the derivative is negative, and therefore

ϕ(
1

1 + r
)− log(Q) 6 ϕ(1) = 1.

This completes the proof. �

IV.5.4.B. z− ∈ Γ, z+ ∈ ΓQ. In this case we still have r =
√

1− 1
Q
, but

z− = (1− r, log(1− r)), z = (1, log
1

Q
), z+ = (1 + r, log

1 + r

Q
),

and

v− = 1− r,(IV.21)

v = γ(IV.22)

v+ = γ(1 + r).(IV.23)

So,

(IV.24) ∆(Q) = 2 log(γ) +
2

γ
− 2− (1− r) log(1− r)− ((1 + r) log(γ(1 + r)) +

1 + r − (1 + r)γ

γ
) =

= 2 log(γ) +
2

γ
− 2− (1− r) log(1− r)− (1 + r) log(γ)− (1 + r) log(1 + r)−

1 + r

γ
+ (1 + r) =

= (1− r) log(γ) +
1− r

γ
− (1− r)− (1− r) log(1− r)− (1 + r) log(1 + r)

Unfortunately, this expression is negative. To prove it one can take very largeQ and write the asymptotic
of everything. We have no intention to do it. However, curious reader can draw the graph of ∆(Q) in,
say, Maple, and see that the function is negative. We now fix our choice of Q0.

Definition 5. We define Q0 as a solution of ∆(Q0) = 0, such that Q0 > Q.

We notice that this choice of Q0 is as written in the Theorem IV.7.
This definition leaves two questions: if such a Q0 exists and, more complicated, if there is a uniform

estimate Q0 6 C ·Q, where C doesn’t depend on Q. Fortunately, the answer is “yes” to both questions.
We prove the following lemma.

Lemma IV.16. If z, z± as above, then for every point (u, v) ∈ [z−, z+] the following holds: ue−v 6 CQ,
where C is some uniform constant.

This lemma, indeed, shows that if we take Q0 = CQ then the function BQ0 will be locally concave in
the domain ΩQ0, and the line segment [z−, z+] lies in this domain. Since ∆(Q) 6 0 and ∆(CQ) > 0, we
immediately get that between Q and CQ there is some Q0 for which ∆(Q0) = 0.

Proof of the Lemma. The segment [z−, z+] has a parametrization u(t) = tx+(1− t)x−, v(t) = ty++(1−
t)y−. Then

ϕ(t) = u(t) exp(−v(t)) = (t(x+ − x−) + x−) exp(−t(y+ − y−)− y−).

We would like to prove that ϕ(t) 6 CQ, t ∈ [0, 1]. We have first of all, ϕ(0) = 1, ϕ(1) = Q, so we need
to check local extrema.

ϕ′(t) = (x+ − x−) exp(. . .)− (y+ − y−)(t(x+ − x−) + x−) exp(. . .).

If
ϕ′(t∗) = 0

then
x+ − x−

y+ − y−
= x− + t∗(x+ − x−),
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so

t∗ =
1

y+ − y−
−

x−

(x+ − x−)
,

or
t∗(y+ − y−) = 1− (y+ − y−)

x−

x+ − x−
.

Therefore,

ϕ(t∗) =
x+ − x−

y+ − y−
exp

(
(y+ − y−)

x−

x+ − x−
− 1− y−

)
.

We now plug our x± and y±. First of all,

x± = 1± r,

so x+ − x− = 2r. Also y+ − y− = log 1+r
Q

− log(1− r) = log 1+r
Q(1−r)

. We notice that

Q(1− r) = Q(1−

√
1−

1

Q
) = Q−

√
Q2 −Q =

Q

Q+
√
Q2 −Q

≍ 1.

So y+ − y− ≍ 1. As this proof doesn’t involve any deep ideas, we finish is briefly. First of all, we are
interested in large Q, because for bounded Q we can always find a uniform C. So,

r =

√
1−

1

Q
∼ 1−

1

2Q
∼ 1,

and x− = 1− r ∼ 1
2Q

, y− ∼ log 1
2Q

. So,

ϕ(t∗) ≍ 2(1−
1

2Q
) exp

(
C ·

1

2Q

1

2
− 1− log

1

2Q

)
≍ 2 exp(log(2Q)) ≍ Q.

This finishes our proof. �

IV.5.4.C. z± ∈ Γ. In this case we change our choice of r. We have z± = (1±r, log(1±r)), z = (1, log 1
Q
).

Since log(1− r2) = 2 log 1
Q
, we get 1− r2 = 1

Q2 , or r =
√

1− 1
Q2 .

As in the first case, we prove two propositions.

Lemma IV.17. ∆(Q) > 0 and for every Q0 > Q we have ∆(Q0) > ∆(Q).

Proof. We start from the second fact. We always have v± = 1± r, and so

∆(Q0) = 2 log v + 2
1− v

γ0
− (1− r) log(1− r)− (1 + r) log(1 + r).

We have already seen that the sum of first two terms increase when Q0 increase, and last two terms do
not depend on Q0.

For the first part, notice that when Q0 = Q we have v = γ, and so

∆(Q) = 2 log(γ) + 2
1− γ

γ
− (1− r) log(1− r)− (1 + r) log(1 + r).

We have

γ′ =
γ

Q(γ − 1)
, r′ =

1

rQ3
.

The last one is new because r is different from first two cases. So,

∆′ =
2

Qγ
+

1

rQ3
log

1− r

1 + r
=

2

γQ

1

rQ3
log

(1− r)2

1− r2
=

2

Q

[
1

γ
+

log(Q−
√
Q2 − 1)

Q
√
Q2 − 1

]
.

We leave the proof that this expression is positive as an easy exercise. Then ∆(Q) > ∆(1) = 0, and we
are done. �
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IV.5.5. Proof of the Theorem IV.7: change of variables.
IV.5.5.A. Discussion. We remind the reader that in the general case we basically have four variables:
x± and y±. Then the center point z = (1, y) is given by 2 = x+ + x− and 2y = y+ + y−. The first
equation lets us get rid of x−, and so we have three variables: x+, y−, and y+. These variables have
rather sophisticated domain. Here are the inequalities that define this domain:

x+e
−y+ ∈ [1, Q]

(2− x+)e
−y− ∈ [1, Q]

e−
y++y−

2 ∈ [1, Q].

This domain is somewhat inconvenient for us. The “explanation” is the following. We want to minimize
some function on this domain. In the interior we will be able to do it, but then we should switch to the
boundary, that is pretty “curved”.

It would be more convenient to introduce variables, for example, x+e
−y+ and x−e

−y−. Their domain
is [1, Q]× [1, Q], which looks better.

However, these variables are still not good enough. We are about to introduce the “best” variables.
IV.5.5.B. New variables. We denote

α = y − log
1

Q0
= y + log(Q0),

α+ = y+ − log
x+

Q0

,

α− = y− − log
2− x+

Q0
.

In fact, α, α± are vertical distance from the point z, z± to ΓQ0. For a fixed α we have three variables:
x+, α+, α−. They are related by equation

(IV.25) 2α = α+ + α− + log(x+) + log(2− x+).

So α±, x+ are on some manifold, and to minimize a function of these three variables we should use
Lagrange multipliers.
IV.5.5.C. New domain. Fix α ∈ [log Q0

Q
, log(Q0)]. We have following inequalities for α± and x+:

α± ∈ [log
Q0

Q
, log(Q0)],

x+ ∈ [1, 2),

α+ + α− > 2α.

The last inequality follows from the fact that log(x+) + log(2− x+) 6 0.
We also notice that in fact x+ can not access all values from [1, 2). We do not pay attention to this

fact, because from the (IV.25), x+ can be calculated in terms of α±, and this is how Lagrange multipliers
work.

So for any fixed α we pay attention only to the domain for α±. We state an easy lemma to understand
this domain. We notice that since α > log Q0

Q
, we get that the line α+ + α− = 2α intersects the square

[log Q0

Q
, log(Q0)]× [log Q0

Q
, log(Q0)] (on the (α−, α+ plane).

We notice that domain will look differently when α > log(Q0)−
1
2
log(Q) and when α is smaller than

this number. The reason is that the vertex α− = log(Q0), α+ = log Q0

Q
may find itself under the line

α+ + α− = 2α.
Therefore, the domain for α−, α+ looks as follows.
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α+

α−

log Q0

Q

log(Q0)

α+ + α− = 2α

α+

α−

log Q0

Q

log(Q0)

α+ + α− = 2α

We are going to study these two cases together. We shall prove that if the global minimum of
2B0(z) − B0(z+)− B0(z−) is strictly negative then it is not obtained neither in the interior, nor in the
interior of edges. Then we will investigate vertices. As the reader can see, edges and vertices, where
α+ + α− = 2α correspond to vertical segments [z−, z+] and therefore are trivial.

Thus, the second case will give us one interesting case: α+ = α− = log(Q0), and the first case will
give the same vertex and α+ = log Q0

Q
, α− = log(Q0).

After this short plan, let us give all details of searching for possible global minima.
IV.5.5.D. Old variables and new variables. We now need to recalculate old variables in terms of new
ones. In particular, we need to relate v and v± with α and α± respectively. We will show in a moment
that it is possible. The reason is that α is closely related to the number a, the first coordinate of a
point, where the tangent line to ΓQ0, ℓ(z), “kisses” ΓQ0.

Let us proceed. Take any point z = (x, y) in ΩQ. We for some time forget that x = 1, and do
calculations for arbitrary x. We do it because then they will work for z±.

We say one more time that now v and a correspond to Q0, so we should write v0 and a0, but to
simplify the notation we do not do it.

We write the equation of the line ℓ(z), tangent to ΓQ0:

y =
γ0x

v
+ log(v)− γ,

so

α = y − log
x

Q0
=
γ0x

v
+ log(v)− log(x) + log(Q0)− γ0.

Using the definition of γ0, we obtain

α =
γ0x

v
+ log(v)− log(x)− 1− log(γ0) =

γ0x

v
− log

γ0x

v
− 1.

We now introduce a function

f(t) = t− log(t)− 1, t > 0.

This function has already appeared in the definition of γ0. Function f is decreasing from + inf to 0
when t ∈ (0, 1] and therefore has an inverse

g(t) = f−1(t), g : [0, inf) → (0, 1].
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t

f(t)

1 t

g(t)

1

We now have an equation

α = f(
γ0

x
v).

We notice that x 6 a, so γ0x 6 γ0a = v, and so g(f(γ0x
v
)) = γ0x

v
. Therefore, we write

γ0x

v
= g(α),

or

v =
γ0x

g(α)
.

In particular we notice that g(α) = x
a
. Basically this is the geometric meaning of α.

The above equation with particular points z = (1, y) and z± gives us

v =
γ0

g(α)
,

v+ =
γ0x+

g(α+)
,

v− =
γ0x−

g(α−)
.

We are now ready to introduce the function that we want to minimize.
IV.5.5.E. Function ∆ in new variables. We remind the reader that we fix α and have three variables
x+, α+, and α− on the manifold

2α = α+ + α− + log(x+) + log(2− x+).

We also remind the reader that x− = 2− x+ and x = 1. Therefore, our function ∆ will be

∆(x+, α+, α−) = 2B0(z)−B0(z+)− B0(z−) =

= 2

(
log(v) +

1− v

γ0

)
−

(
x+ log(v+) +

x+ − v+

γ0

)
−

(
(2− x+) log(v−) +

2− x+ − v+

γ0

)
.
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We now want to rewrite the last expression in terms of α± and x+. We get

∆ = (2x log v − x+ log v+ − x− log v−)−
1

γ0
(2v − v+ − v−) =

= 2 log
1

g(α)
− x+ log

x+

g(α+)
− (2− x+) log

2− x+

g(α−)
−

2

g(α)
+

x+

g(α+)
+

2− x+

g(α−)
.

Due to the huge importance of this function, we write the final result separately:

∆(x+, α+, α−) = 2 log
1

g(α)
− x+ log

x+

g(α+)
− (2− x+) log

2− x+

g(α−)
−

2

g(α)
+

x+

g(α+)
+

2− x+

g(α−)
.

We now start to minimize it. We prove the following theorem.

Theorem IV.18. (1) For a fixed α 6 log(Q0)−
1
2
log(Q) the following holds:

min∆(x+, α+, α−) = min

[
0,∆(x̂+, log(Q0), log(Q0)),∆(x̃+, log

Q0

Q
, log(Q0))

]
,

where x̂+ is a solution of equation 2α = 2 log(Q0) + log(x+) + log(2 − x+) x+ > 1, and x̃+ is a
solution of equation 2α = log(Q0) + log Q0

Q
+ log(x+) + log(2− x+), x+ > 1.

(2) For a fixed α > log(Q0)−
1
2
log(Q) the following holds:

min∆(x+, α+, α−) = min [0,∆(x̂+, log(Q0), log(Q0))] .

Remark IV.19. We notice that the nonzero minimum may be attained only on vertices.

IV.5.5.F. Derivatives of ∆. Before we form the lagrangian, let us find derivatives of ∆ with respect to
α+, α− and x+. First of all,

g′(t) =
1

f ′(g(t))
=

g(t)

g(t)− 1
.

So,
∂∆

∂α+
=

x+

g(α+)

g(α+)

g(α+)− 1
−

x+

g(α+)2
g(α+)

g(α+)− 1
=

x+

g(α+)
.

Similarly,
∂∆

∂α−

=
2− x+

g(α−)
.

Finally, we take the derivative with respect to x+.

∂∆

∂x+
= − log

x+

g(α+)
−1+ log

2− x+

g(α−)
+1+

1

g(α+)
−

1

g(α−)
= − log

x+

g(α+)
+ log

2− x+

g(α−)
+

1

g(α+)
−

1

g(α−)
.

IV.5.5.G. Step 1: interior of the domain. Suppose we are in the interior of domain for α+, α−. We form
a Lagrangian:

L(x+, α+, α−, λ) = ∆(x+, α+, α−)− λ · (α+ + α− + log(x+) + log(2− x+)− 2α).

Differentiating it with respect to α±, we obtain

x+

g(α+)
=

2− x+

g(α−)
= λ.

These equalities mean that

g(α+) =
x+

λ
, g(α−) =

2− x+

λ
.

Applying f to both sides, and recalling that f(g(t)) = t, we get

α+ = f(
x+

λ
) =

x+

λ
− log(x+) + log(λ)− 1,

α− = f(
2− x+

λ
) =

2− x+

λ
− log(2− x+) + log(λ)− 1.



EQUIVALENT DEFINITIONS OF DYADIC MUCKENHOUPT AND REVERSE HÖLDER CLASSES IN TERMS OF CARLESON SEQUENCES,

Let us plug these equalities into

α+ + α− − 2α + log(x+) + log(2− x+) = 0.

By direct calculation,

α =
1

λ
+ log(λ)− 1 = f(

1

λ
).

We notice that 1
λ
= g(α+)

x+
6 g(α+) 6 1, and so g(f( 1

λ
)) = 1

λ
.

Notice that it would not be true if λ was less than 1.
So, g(α) = 1

λ
(in fact, from this equation we find λ). Now we can calculate ∆ at our point.

∆ = 2 log(λ)− x+ log(λ)− (2− x+) log(λ)− 2λ+ λ+ λ = 0.

IV.5.5.H. Conclusion. From the calculation above we conclude the following: either the global minimum
of ∆ is zero, or the global minimum is obtained on the boundary.
IV.5.5.I. Step 2: reduction to the case α− > α+. We now prove a technical but very useful lemma. It
will show that it is sufficient to minimize ∆ only on half of our domain, when α− > α+. This will show
that we do not need to consider edges α+ = log(Q0) and α− = log Q0

Q
, except for vertices.

Lemma IV.20. Fix x+ and let

∆(α+, α−) = ∆(x+, α+, α−) = 2 log
1

g(α)
−x+ log

x+

g(α+)
− (2−x+) log

2− x+

g(α−)
−

2

g(α)
+

x+

g(α+)
+
2− x+

g(α−)
.

If u > v then ∆(u, v) > ∆(v, u).

Remark IV.21 (Discussion). So, if α+ > α− then ∆(α+, α−) > ∆(α−, α+), and so if the global
minimum is attained on the boundary, it is for sure attained on the part when α+ 6 α−.

Remark IV.22 (Discussion). Notice that this lemma is natural. As we have seen from the investigation
of cases when z, z± are on the boundary, the worst case happens when z− ∈ Γ and z+ ∈ ΓQ. This

corresponds to α− = log(Q0) and α+ = log Q0

Q
, which is smaller than α−.

Proof. First, since u > v we have g(u) < g(v) 6 1. We denote t = g(u) and s = g(v), so t < s 6 1. We
have

∆(u, v)−∆(v, u) = x+ log(t)+(2−x+) log(s)+
x+

t
+
2− x+

s
−

(
x+ log(s) + (2− x+) log(t) +

x+

s
+

2− x+

t

)
=

= (2x+ − 2) log(t) +
2x+ − 2

t
+ (2− 2x+) log(s) +

2− 2x+
s

= (2x+ − 2)

(
1

t
+ log(t)−

1

s
− log(s)

)
.

Denote ϕ(x) = 1
x
+ log(x). Then ϕ′(x) = 1

x
− 1

x2 = x−1
x2 < 0 when x 6 1. So, since t < s 6 1, we get

∆(u, v)−∆(v, u) > 0.

�

IV.5.5.J. Step 3: edge α++α− = 2α. In this case x+ = 1, and so 2−x+ = 1, and we have a vertical line
segment [z−, z+]. It definitely lies entirely in ΩQ, where the function B0 is locally concave. Therefore,
∆ > 0.
IV.5.5.K. Step 4: edge α− = log(Q0). In this case our manifold is

2α = α+ + log(Q0) + log(x+) + log(2− x+).

Keeping in mind that α− is fixed and we can not differentiate with respect to it, we write the same
Lagrangian as before, and take derivatives with respect to α+ and x+. We have

L(x+, α+, α−, λ) = ∆(x+, α+, α−)− λ · (α+ + α− + log(x+) + log(2− x+)− 2α),
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and so
x+

g(α+)
= λ.

In particular, we again get that λ > 1. We now differentiate with respect to x+, and we get

− log
x+

g(α+)
+ log

2− x+

g(α−)
+

1

g(α+)
−

1

g(α−)
− λ

(
1

x+
−

1

2− x+

)
= 0.

Using the equality x+

g(α+)
= λ, we get

− log(λ) + log
2− x+

g(α−)
−

1

g(α−)
+

λ

2− x+
= 0,

and thus

f(
λ

2− x+
) = f(

1

g(α−)
).

We notice that 2− x+ 6 1 and λ > 1, so λ
2−x+

> 1. Since f(t) increases when t > 1, we get

λ

2− x+
=

1

g(α−)
.

The same equation we had when we were investigating the interior. This equation yields to ∆ = 0.
IV.5.5.L. Step 5: α+ = log Q0

Q
. This edge is more delicate. Here we differentiate with respect to α− and

x+.

2− x+

g(α−)
= λ,

− log
x+

g(α+)
+ log

2− x+

g(α−)
+

1

g(α+)
−

1

g(α−)
− λ(

1

x+
−

1

2− x+
) = 0.

Substituting the first one into the second, we get

− log
x+

g(α+)
+ log(λ) +

1

g(α+)
−

λ

x+
= 0.

We make the following remark. Similarly to the previous step, we get f( λ
x+

) = f( 1
g(α+)

). But now we

can not say that λ
x+

> 1, and so we can not conclude that λ
x+

= 1
g(α+)

. We show how to finish the proof

without this conclusion. We also warn the reader that this proof would not work in the previous step
because it is tied to the fact that x+ is on the Q-boundary of ΩQ.

We now proceed as follows:

x+

g(α+)
− x+ log

x+

g(α+)
= λ− x+ log(λ).

Substituting this in ∆, we get

∆ = 2 log
1

g(α)
+ λ− x+ log(λ)− 2 log(λ)−

2

g(α)
+ λ = 2(f(λ)− f(

1

g(α)
) = 2(f(

2− x+

g(α−)
)− f(

1

g(α)
)).

Notice that if 2−x+

g(α−)
> 1

g(α)
> 1 then, due to the monotonicity of f(t), we get that ∆ > 0. Therefore,

we should prove that it is non negative when 2−x+

g(α−)
< 1

g(α)
. The following lemma proves this fact.

Lemma IV.23. If 2−x+

g(α−)
< 1

g(α)
then the line segment [z−, z+] lies entirely in ΩQ0 and, consequently,

2B0(z)− B0(z+)−B0(z−) > 0.
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Before proving this lemma we need an observation, related to the geometry of ΩQ.
Take the point z+, which in our case lies on ΓQ, and take the tangent to ΓQ. Since we assume that

x+ > x− and y+ > y−, we get the following: if the segment [z−, z+] goes above this tangent line, then
it lies entirely in ΩQ, and the fact stated in the lemma is true. So the only interesting case is when
[z−, z+] goes below this tangent. It means that it goes outside of ΩQ nearby z+, and then returns before
it “hits” the point z. Therefore, the segment [z−, z] lies in ΩQ, so the only problem can occur between
z and z+.

z+

z−

z

Our lemma will be a consequence from the following one.

Lemma IV.24. Suppose p > a > 1, α = 1
a
− log 1

a
− 1 and α+ = p

a
− log p

a
− 1. If the line segment

[z−, z+] does not lie entirely in ΩQ0 then x+ > p.

Proof. Such a and p exist, because for every u > 0 the equation t − log(t) − 1 = u has two solutions,
one of which is less than 1, and another is bigger than 1.

We take our point (1, y) and draw the tangent to ΓQ0 that goes to the right. Since the only possibility
for [z−, z+] to be outside of ΓQ is that part of [z, z+] is outside, we don’t care about z− at all. If our
[z, z+] goes above this tangent, then it’s in ΩQ0 , and so the only “bad” case is when [z, z+] goes below.
Suppose that the tangent “kisses” ΓQ0 at point (a, log a

Q0
). Then the equation (in (x1, x2) plane) is

x2 − y =
1

a
(x1 − 1).

Since a satisfies the equation, and since α = y + log(Q0), we get

1

a
− log

1

a
− 1 = α.

Now take the point (p, log p
Q
) — the point, where our tangent intersects ΓQ for the second time. This

is the first time when our segment [z, z+] can return to ΩQ (if it ever went out). Since z+ is on the
right-hand side from the “return” point, we have x+ > p. Let us find p.
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z
(a, log a

Q0

)

(p, log p
Q
)

z+

We have

log
p

Q
− y =

p

a
−

1

a
,

and so, since α+ = log Q0

Q
, we get

α+ =
p

a
− log

p

a
− 1.

So both a and p are as in the statement, which finishes the proof. �

Now we prove the Lemma IV.23.

Proof. Suppose that [z−, z+] does not lie in ΩQ0 . Then x+ > p, which implies x+

a
>

p
a
> 1, so f(x+

a
) > α+.

Next, we have

2α = α+ + α− + log(x+) + log(2− x+) 6
x+

a
− log

x+

a
− 1 + α− + log(x+) + log(2− x+).

Recall that 1
a
− log 1

a
− 1 = α, so

2α 6
x+ − 1

a
+

1

a
− log

1

a
− 1 + α− + log(2− x+),

thus

α 6
x+ − 1

a
+ α− + log(2− x+).

Using the equation for a and α again, we get

2− x+

a
− log

2− x+

a
− 1 6 α−,

so

f(
2− x+

a
) 6 α−.

We apply g to both sides. We see that 2− x+ = x− 6, while a > 1, so g(f(2−x+

a
)) = 2−x+

a
, therefore

2− x+

a
> g(α−),

and so
2− x+

g(α−)
> a.

But we know that α = f( 1
a
) and a > 1, so g(α) = 1

a
, implies

2− x+

g(α−)
>

1

g(α)
.



EQUIVALENT DEFINITIONS OF DYADIC MUCKENHOUPT AND REVERSE HÖLDER CLASSES IN TERMS OF CARLESON SEQUENCES,

But this contradicts the assumption of our lemma. �

We now claim that the Theorem IV.18 is proved. Indeed, the global minimum is either 0, or attained
on the boundary. On the boundary it is either again 0, or attained on vertices. But vertices where
α+ + α− = 2α give us non negative result, so the minimum may be attained only on vertices from the
theorem.
IV.5.5.M. Step 6: Vertex α+ = α− = log(Q0). In this case

α = log(Q0) +
1

2
log(x+(2− x+)).

Let us get bounds for x+. Clearly, x+ > 1, and this bound is accessible when x+ = x− = 1. Since

α > log Q0

Q
, we get x+(2 − x+) > 1

Q2 , which means that x+ 6 1 +
√

1− 1
Q2 . As we know from the

Section IV.5.4.C, this is also accessible when x ∈ ΓQ. So, x+ ∈ [1, 1 + r], where r =
√

1− 1
Q2 .

We now treat α+ as a function of x+ and, therefore, our ∆ becomes a function of x+. We have

∆(x+) = 2 log
1

g(α)
−

2

g(α)
− x+ log(x+)− (2− x+) log(2− x+)− 2 log

1

g(α+)
+

2

g(α+)
.

From the same Section IV.5.4.C that ∆(1 + r) > 0. We intend to prove that ∆
′

6 0. Then we will be
done with this case. We first notice that

∂α

∂x+
=

1

2

(
1

x+
−

1

2− x+

)
.

Therefore,

∆
′

(x+) =
2

g(α)
·
1

2

(
1

x+
−

1

2− x+

)
−log(x+)+log(2−x+) =

1

g(α)x+
−log(x+)−

1

g(α)(2− x+)
+log(2−x+) =

=
1

g(α)x+
+ log

1

g(α)x+
−

(
1

g(α)(2− x+)
+ log

1

g(α)(2− x+)

)
.

The last equality is obtained by adding and subtracting log 1
g(α)

. We notice that the function s 7→ 1
s
+log 1

s

is decreasing, and g(α)x+ > g(α)(2− x+). Therefore, ∆
′

(x+) 6 0, which finishes our proof in this case.
IV.5.5.N. The vertex α+ = log Q0

Q
, α− = log(Q0). Now we set α+ = log Q0

Q
and α− = log(Q0), so

α = log(Q0)−
1

2
log(Q) +

1

2
log(x+(2− x+)).

Bounds for x+ in this case are 1 6 x+ 6 1+ r, where r =
√
1− 1

Q
. We know from the Section IV.5.4.B

that they are accessible, and that ∆(1 + r) = 0 — that is exactly our choice of Q0, and this is the first
and the only time when we use it. So again we would like to prove that ∆ is decreasing. The difficulty
is that now α+ 6= α−, and so ∆ does not have nice cancelations. We have

∆(x+) = 2 log
1

g(α)
−

2

g(α)
−x+ log(x+)−(2−x+) log(2−x+)+x+ log(g(α+))+(2−x+) log(g(α−))+

x+

g(α+)
+
2− x+

g(α−)

and so

∆
′

(x+) =
1

g(α)

(
1

x+
−

1

2− x+

)
− log(x+) + log(2− x+) +

1

g(α+)
− log

1

g(α+)
−

1

g(α−)
+ log

1

g(α−)
.

From the investigation of previous vertex we know that

1

g(α)

(
1

x+
−

1

2− x+

)
− log(x+) + log(2− x+) 6 0.
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This fact did not depend on the choice of α±. Finally, α+ < α−, so g(α+) > g(α−), thus
1

g(α−)
> 1

g(α+)
>

1, and

f(
1

g(α−)
) > f(

1

g(α+)
).

But this means exactly that

1

g(α+)
− log

1

g(α+)
−

1

g(α−)
+ log

1

g(α−)
< 0.

Thus, our proof is finished.
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